metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Carbonyl(*N*-nitroso-*N*-oxido-1-naphtylamine- $\kappa^2 O, O'$)(triphenylphosphine- κP)rhodium(I) acetone solvate

Johan A. Venter,* W. Purcell, H. G. Visser and T. J. Muller

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa

Correspondence e-mail: venterja.sci@ufs.ac.za

Received 4 November 2009; accepted 9 November 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.006 Å; *R* factor = 0.047; *wR* factor = 0.157; data-to-parameter ratio = 18.5.

The title compound, $[Rh(C_{10}H_7N_2O_2)(C_{18}H_{15}P)(CO)]$ -(CH₃)₂CO, is the second structural report of a metal complex formed with the O,O'-C₁₀H₇N₂O₂ (neocupferrate) ligand. In the crystal structure, the metal centre is surrounded by one carbonyl ligand, one triphenylphosphine ligand and the bidentate neocupferrate ligand, forming a distorted square-planar RhCO₂P coordination set which is best illustrated by the small O-Rh-O bite angle of 77.74 (10)°. There are no classical hydrogen-bond interactions observed for this complex.

Related literature

For synthesis of similar Rh complexes and information on oxidative addition products, see: Basson *et al.* (1984, 1986); Steyn *et al.* (1992); Smit *et al.* (1994); Roodt & Steyn (2000). For another structural report of a complex with the bidentate neocupferrate ligand, see: Tamaki & Okabe (1998).

Experimental

Crystal data

 $[Rh(C_{10}H_7N_2O_2)(C_{18}H_{15}P)(CO)]$ - C_3H_6O

 $M_r = 638.44$ Triclinic, $P\overline{1}$

m
ctions lections
$I > 2\sigma(I)$

 $V_{12090}(11)$ Å³

$R[F^2 > 2\sigma(F^2)] = 0.047$	363 parameters
$wR(F^2) = 0.157$	H-atom parameters constrained
S = 1.16	$\Delta \rho_{\rm max} = 1.75 \text{ e} \text{ Å}^{-3}$
6710 reflections	$\Delta \rho_{\rm min} = -1.18 \text{ e} \text{ Å}^{-3}$

Table 1

- 0.700 (5) Å

Selected geometric parameters (Å, °).

1.817 (4)	O3-Rh1	2.082 (2)
2.026 (3)	P1-Rh1	2.2240 (11)
176.15 (13)	C1-Rh1-P1	90.54 (12)
101.74 (14)	O2-Rh1-P1	89.92 (8)
77.74 (10)	O3-Rh1-P1	167.66 (8)
	1.817 (4) 2.026 (3) 176.15 (13) 101.74 (14) 77.74 (10)	1.817 (4) O3-Rh1 2.026 (3) P1-Rh1 176.15 (13) C1-Rh1-P1 101.74 (14) O2-Rh1-P1 77.74 (10) O3-Rh1-P1

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The research fund of the University of the Free State and the NRF is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2279).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Basson, S. S., Leipoldt, J. G. & Nel, J. T. (1984). *Inorg. Chim. Acta*, **84**, 167–169. Basson, S. S., Leipoldt, J. G., Roodt, A., Venter, J. A. & Van der Walt, T. J.
- (1986). Inorg. Chim. Acta, **119**, 35–38. Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn,
- Germany. Bruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS
- Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Roodt, A. & Steyn, G. J. J. (2000). Res. Devel. Inorg. Chem. 2, 1-23.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smit, D. M. C., Basson, S. S. & Steynberg, E. C. (1994). *Rhodium Ex.* **7–8**, 12–14.
- Steyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). *Inorg. Chem.* **31**, 3477–3481. Tamaki, K. & Okabe, N. (1998). *Acta Cryst.* C**54**, 195–197.

Acta Cryst. (2009). E65, m1578 [doi:10.1107/S1600536809047321]

Carbonyl(*N*-nitroso-*N*-oxido-1-naphtylamine- $\kappa^2 O, O'$)(triphenylphosphine- κP)rhodium(I) acetone solvate

J. A. Venter, W. Purcell, H. G. Visser and T. J. Muller

Comment

The title compound (Figure 1) forms part of a series of rhodium complexes used in the kinetic studies of oxidative addition reactions (Basson *et al.*, 1984, 1986; Steyn *et al.*, 1992; Smit *et al.*, 1994; Roodt & Steyn, 2000).

In the crystal structure, the Rh(I) metal centre is coordinated to one carbonyl ligand, one triphenylphosphine ligand and the bidentate neocupferrate ligand, ($C_{10}H_7N_2O_2$) to form a distorted square planar complex best illustrated by the small O–Rh–O bite angle of 77.74 (10) °. The Rh–O2 bond length of 2.026 (3) Å is significantly smaller than the Rh–O3 bond length of 2.082 (2) Å and is indicative of the larger *trans*-influence of the PPh₃ ligand as opposed to the carbonyl ligand. This is the second structural report involving the neocupferrate ligand (Tamaki & Okabe, 1998). There is no classical hydrogen interaction observed for this complex.

Experimental

A solution of $[Rh_2Cl_2(CO)_4]$ was prepared by refluxing a solution of hydrated RhCl₃ in DMF for approximately 30 minutes. An equivalent amount of *N*-hydroxy-*N*-nitrosonaphtylamine (neocupf) was added to this solution to produce $[Rh(neocupf)(CO)(PPh_3)]$, which was isolated through precipitation with water. The title compound was obtained by leav-

ing a 5 cm³ beaker containing a concentrated acetone solution of $[Rh(neocupf)(CO)(PPh_3)]$ uncovered at room temperature. Well shaped yellow crystals formed within 4 h.

Refinement

The methylene, aromatic and methyl H atoms were placed in geometrically idealized positions (C—H = 0.93 - 0.98 Å) and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene and aromatic protons and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl protons, respectively. The highest residual electron density was located 0.99 Å from H4A and the deepest hole was 0.85 Å from Rh1.

Figures

Fig. 1. View of the complex molecule of the title compound and of the solvent molecule. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

Carbonyl(*N*-nitroso-*N*-oxido-1-naphtylamine- $\kappa^2 O_i O^i$)(triphenylphosphine- κP)rhodium(I) acetone solvate

Crystal data

$[Rh(C_{10}H_7N_2O_2)(C_{18}H_{15}P)(CO)]$	C_3H_6O $Z=2$
$M_r = 638.44$	$F_{000} = 652$
Triclinic, PT	$D_{\rm x} = 1.516 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71069$ Å
<i>a</i> = 9.709 (5) Å	Cell parameters from 5578 reflections
b = 10.186 (5) Å	$\theta = 2.1 - 28.1^{\circ}$
<i>c</i> = 15.393 (5) Å	$\mu = 0.71 \text{ mm}^{-1}$
$\alpha = 77.499 (5)^{\circ}$	T = 100 K
$\beta = 85.045 (5)^{\circ}$	Plate, yellow
$\gamma = 70.279 \ (5)^{\circ}$	$0.21 \times 0.21 \times 0.08 \text{ mm}$
$V = 1398.9 (11) \text{ Å}^3$	

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer	6710 independent reflections
Radiation source: sealed tube	5377 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.053$
T = 100 K	$\theta_{\rm max} = 28^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.4^{\circ}$
Absorption correction: multi-scan SADABS (Bruker, 2004)	$h = -11 \rightarrow 12$
$T_{\min} = 0.763, T_{\max} = 0.847$	$k = -13 \rightarrow 13$
23989 measured reflections	$l = -19 \rightarrow 20$

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0853P)^2 + 0.0168P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.047$	$(\Delta/\sigma)_{\rm max} = 0.001$
$wR(F^2) = 0.157$	$\Delta \rho_{\text{max}} = 1.75 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.16	$\Delta \rho_{\rm min} = -1.18 \text{ e} \text{ Å}^{-3}$
6710 reflections	Extinction correction: none
363 parameters	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.6328 (4)	0.0332 (4)	0.3430 (2)	0.0177 (8)
C2	1.0765 (4)	0.7216 (5)	0.1312 (3)	0.0239 (9)
C3	1.1293 (5)	0.8324 (5)	0.1536 (3)	0.0319 (10)
H3A	1.0737	0.9245	0.1213	0.048*
H3B	1.2309	0.8127	0.1374	0.048*
H3C	1.117	0.8308	0.2163	0.048*
C4	1.1869 (5)	0.5745 (5)	0.1384 (3)	0.0377 (12)
H4A	1.1384	0.509	0.1324	0.057*
H4B	1.2329	0.5453	0.1954	0.057*
H4C	1.2597	0.5754	0.0922	0.057*
C11	0.6713 (4)	0.2154 (4)	0.1495 (2)	0.0142 (7)
C12	0.7244 (4)	0.0790 (4)	0.1287 (2)	0.0181 (8)
H12	0.7963	0.0068	0.1637	0.022*
C13	0.6713 (4)	0.0515 (4)	0.0572 (3)	0.0203 (8)
H13	0.7079	-0.039	0.0439	0.024*
C14	0.5630 (4)	0.1580 (4)	0.0043 (2)	0.0203 (8)
H14	0.5281	0.1394	-0.0445	0.024*
C15	0.5083 (4)	0.2912 (4)	0.0251 (2)	0.0206 (8)
H15	0.4347	0.3622	-0.0093	0.025*
C16	0.5624 (4)	0.3204 (4)	0.0974 (2)	0.0170 (8)
H16	0.525	0.4109	0.1106	0.02*
C21	0.9422 (4)	0.2162 (4)	0.2069 (2)	0.0165 (8)
C22	1.0527 (4)	0.1445 (4)	0.2703 (2)	0.0162 (8)
H22	1.0277	0.1147	0.3292	0.019*
C23	1.2001 (4)	0.1179 (4)	0.2450 (3)	0.0198 (8)
H23	1.2726	0.0712	0.2873	0.024*
C24	1.2381 (4)	0.1601 (4)	0.1585 (3)	0.0205 (8)
H24	1.3362	0.1417	0.1422	0.025*
C25	1.1307 (5)	0.2304 (4)	0.0950 (3)	0.0221 (9)
H25	1.1571	0.2592	0.0363	0.027*
C26	0.9827 (4)	0.2581 (4)	0.1189 (3)	0.0204 (8)
H26	0.9112	0.3047	0.076	0.024*
C31	0.6668 (4)	0.4369 (4)	0.2389 (2)	0.0158 (8)
C32	0.7292 (4)	0.5387 (4)	0.1976 (2)	0.0171 (8)
H32	0.8199	0.5111	0.1692	0.021*
C33	0.6579 (4)	0.6807 (4)	0.1984 (3)	0.0198 (8)
H33	0.7011	0.7482	0.171	0.024*
C34	0.5219 (5)	0.7233 (4)	0.2398 (3)	0.0215 (9)
H34	0.4733	0.8193	0.2395	0.026*
C35	0.4598 (4)	0.6231 (4)	0.2813 (2)	0.0198 (8)
H35	0.3687	0.6511	0.3091	0.024*
C36	0.5321 (4)	0.4806 (4)	0.2818 (2)	0.0186 (8)
H36	0.4901	0.4131	0.3111	0.022*

Fractional atomic coordinates and isot	ptropic or equivalent	isotropic displacement	parameters ($Å^2$)
--	-----------------------	------------------------	----------------------

C41	0.8788 (4)	0.3118 (4)	0.5592 (2)	0.0150 (8)
C42	1.0024 (4)	0.2448 (4)	0.6094 (2)	0.0184 (8)
H42	1.047	0.1468	0.6171	0.022*
C43	1.0612 (4)	0.3262 (4)	0.6493 (2)	0.0215 (9)
H43	1.1461	0.2824	0.6825	0.026*
C44	0.9926 (4)	0.4700 (4)	0.6387 (2)	0.0206 (8)
H44	1.0319	0.5229	0.6652	0.025*
C45	0.8626 (4)	0.5407 (4)	0.5882 (2)	0.0172 (8)
C46	0.8031 (4)	0.4598 (4)	0.5459 (2)	0.0143 (7)
C47	0.6743 (4)	0.5309 (4)	0.4946 (2)	0.0165 (8)
H47	0.6355	0.4796	0.4664	0.02*
C48	0.6073 (4)	0.6744 (4)	0.4867 (3)	0.0202 (8)
H48	0.5224	0.7197	0.4537	0.024*
C49	0.6656 (4)	0.7544 (4)	0.5281 (3)	0.0211 (9)
H49	0.6189	0.852	0.5221	0.025*
C50	0.7902 (4)	0.6894 (4)	0.5769 (2)	0.0192 (8)
H50	0.8281	0.7437	0.6032	0.023*
N1	0.8228 (3)	0.2270 (3)	0.51666 (19)	0.0141 (6)
N7	0.7762 (3)	0.1307 (3)	0.5647 (2)	0.0165 (7)
01	0.5680 (3)	-0.0262 (3)	0.31778 (19)	0.0293 (7)
O2	0.8240 (3)	0.2552 (3)	0.42710 (16)	0.0162 (6)
O3	0.7281 (3)	0.0595 (3)	0.51892 (16)	0.0172 (6)
O4	0.9494 (3)	0.7466 (3)	0.1110 (2)	0.0331 (7)
P1	0.75192 (10)	0.24553 (10)	0.24302 (6)	0.0132 (2)
Rh1	0.72947 (3)	0.13381 (3)	0.381902 (17)	0.01389 (12)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0155 (19)	0.015 (2)	0.0185 (19)	-0.0022 (16)	0.0009 (15)	0.0012 (15)
C2	0.019 (2)	0.031 (2)	0.019 (2)	-0.0048 (18)	0.0013 (16)	-0.0045 (17)
C3	0.028 (2)	0.032 (3)	0.034 (2)	-0.010 (2)	0.0047 (19)	-0.004 (2)
C4	0.028 (3)	0.029 (3)	0.056 (3)	-0.001 (2)	-0.007 (2)	-0.018 (2)
C11	0.0118 (17)	0.017 (2)	0.0139 (17)	-0.0053 (15)	0.0017 (14)	-0.0026 (14)
C12	0.0152 (19)	0.016 (2)	0.0204 (19)	-0.0018 (16)	-0.0023 (15)	-0.0032 (15)
C13	0.024 (2)	0.017 (2)	0.021 (2)	-0.0059 (17)	0.0032 (16)	-0.0079 (16)
C14	0.022 (2)	0.027 (2)	0.0160 (18)	-0.0123 (18)	-0.0006 (15)	-0.0065 (16)
C15	0.019 (2)	0.025 (2)	0.0168 (19)	-0.0090 (17)	-0.0019 (15)	0.0012 (16)
C16	0.0164 (19)	0.015 (2)	0.0202 (19)	-0.0058 (16)	-0.0027 (15)	-0.0035 (15)
C21	0.0148 (18)	0.0135 (19)	0.0211 (19)	-0.0032 (15)	-0.0008 (15)	-0.0055 (15)
C22	0.0146 (19)	0.015 (2)	0.0178 (18)	-0.0037 (15)	0.0039 (14)	-0.0038 (15)
C23	0.018 (2)	0.021 (2)	0.022 (2)	-0.0057 (16)	0.0004 (16)	-0.0064 (16)
C24	0.0154 (19)	0.017 (2)	0.030 (2)	-0.0062 (16)	0.0063 (16)	-0.0098 (17)
C25	0.026 (2)	0.024 (2)	0.018 (2)	-0.0099 (18)	0.0074 (16)	-0.0076 (17)
C26	0.022 (2)	0.020 (2)	0.021 (2)	-0.0073 (17)	-0.0044 (16)	-0.0044 (16)
C31	0.0189 (19)	0.0141 (19)	0.0121 (17)	-0.0022 (15)	-0.0062 (14)	-0.0010 (14)
C32	0.019 (2)	0.018 (2)	0.0162 (18)	-0.0081 (16)	-0.0061 (15)	-0.0025 (15)
C33	0.025 (2)	0.015 (2)	0.022 (2)	-0.0097 (17)	-0.0054 (16)	-0.0024 (16)

C34	0.027 (2)	0.012 (2)	0.024 (2)	-0.0001 (16)	-0.0081 (17)	-0.0067 (16)
C35	0.017 (2)	0.017 (2)	0.0195 (19)	0.0021 (16)	-0.0019 (15)	-0.0037 (16)
C36	0.022 (2)	0.018 (2)	0.0151 (18)	-0.0068 (17)	0.0020 (15)	-0.0020 (15)
C41	0.0142 (18)	0.019 (2)	0.0144 (18)	-0.0070 (16)	0.0014 (14)	-0.0077 (15)
C42	0.018 (2)	0.017 (2)	0.0162 (18)	-0.0006 (16)	0.0003 (15)	-0.0040 (15)
C43	0.019 (2)	0.027 (2)	0.0180 (19)	-0.0052 (17)	-0.0008 (15)	-0.0054 (16)
C44	0.022 (2)	0.026 (2)	0.0190 (19)	-0.0122 (18)	-0.0008 (16)	-0.0068 (16)
C45	0.0175 (19)	0.020 (2)	0.0180 (19)	-0.0092 (16)	0.0047 (15)	-0.0090 (16)
C46	0.0123 (18)	0.0146 (19)	0.0169 (18)	-0.0047 (15)	0.0023 (14)	-0.0057 (15)
C47	0.0158 (19)	0.016 (2)	0.0189 (19)	-0.0059 (16)	-0.0003 (15)	-0.0041 (15)
C48	0.0142 (19)	0.019 (2)	0.023 (2)	-0.0009 (16)	0.0011 (15)	-0.0044 (16)
C49	0.019 (2)	0.016 (2)	0.026 (2)	-0.0036 (16)	0.0058 (16)	-0.0044 (16)
C50	0.027 (2)	0.020 (2)	0.0180 (19)	-0.0153 (18)	0.0090 (16)	-0.0086 (16)
N1	0.0145 (16)	0.0126 (16)	0.0143 (15)	-0.0028 (13)	0.0005 (12)	-0.0036 (12)
N7	0.0158 (16)	0.0121 (16)	0.0190 (16)	-0.0019 (13)	-0.0038 (13)	-0.0009 (13)
01	0.0324 (18)	0.0344 (19)	0.0309 (16)	-0.0209 (15)	-0.0054 (13)	-0.0089 (14)
O2	0.0209 (14)	0.0182 (14)	0.0101 (12)	-0.0076 (12)	0.0009 (10)	-0.0023 (10)
O3	0.0206 (14)	0.0158 (14)	0.0130 (13)	-0.0035 (11)	-0.0021 (10)	-0.0015 (10)
O4	0.0233 (17)	0.040 (2)	0.0330 (17)	-0.0042 (14)	-0.0052 (13)	-0.0079 (14)
P1	0.0131 (5)	0.0114 (5)	0.0141 (5)	-0.0018 (4)	-0.0013 (4)	-0.0035 (4)
Rh1	0.01397 (18)	0.01172 (19)	0.01518 (18)	-0.00255 (13)	-0.00048 (12)	-0.00361 (12)

Geometric parameters (Å, °)

C1—O1	1.146 (5)	C31—C36	1.389 (5)
C1—Rh1	1.817 (4)	C31—P1	1.832 (4)
C2—O4	1.226 (5)	C32—C33	1.379 (5)
C2—C3	1.497 (6)	С32—Н32	0.93
C2—C4	1.507 (6)	C33—C34	1.388 (6)
С3—НЗА	0.96	С33—Н33	0.93
С3—Н3В	0.96	C34—C35	1.371 (6)
С3—НЗС	0.96	С34—Н34	0.93
C4—H4A	0.96	C35—C36	1.381 (5)
C4—H4B	0.96	С35—Н35	0.93
C4—H4C	0.96	С36—Н36	0.93
C11—C16	1.385 (5)	C41—C42	1.372 (5)
C11—C12	1.407 (5)	C41—C46	1.414 (5)
C11—P1	1.823 (4)	C41—N1	1.448 (5)
C12—C13	1.373 (5)	C42—C43	1.410 (6)
C12—H12	0.93	C42—H42	0.93
C13—C14	1.393 (5)	C43—C44	1.368 (6)
C13—H13	0.93	C43—H43	0.93
C14—C15	1.377 (6)	C44—C45	1.424 (5)
C14—H14	0.93	C44—H44	0.93
C15—C16	1.398 (5)	C45—C50	1.416 (5)
C15—H15	0.93	C45—C46	1.433 (5)
C16—H16	0.93	C46—C47	1.423 (5)
C21—C26	1.394 (5)	C47—C48	1.367 (5)
C21—C22	1.407 (5)	С47—Н47	0.93

C21—P1	1.825 (4)	C48—C49	1.410 (6)
C22—C23	1.401 (5)	C48—H48	0.93
C22—H22	0.93	C49—C50	1.367 (6)
C23—C24	1.367 (5)	С49—Н49	0.93
С23—Н23	0.93	С50—Н50	0.93
C24—C25	1.387 (6)	N1—N7	1.281 (4)
C24—H24	0.93	N1—O2	1.346 (4)
C25—C26	1.400 (6)	N7—O3	1.323 (4)
C25—H25	0.93	O2—Rh1	2.026 (3)
С26—Н26	0.93	O3—Rh1	2.082 (2)
C31—C32	1.385 (5)	P1—Rh1	2.2240 (11)
O1—C1—Rh1	177.7 (4)	С32—С33—Н33	119.8
O4—C2—C3	122.5 (4)	С34—С33—Н33	119.8
O4—C2—C4	121.1 (4)	C35—C34—C33	119.6 (4)
C3—C2—C4	116.3 (4)	С35—С34—Н34	120.2
С2—С3—НЗА	109.5	С33—С34—Н34	120.2
С2—С3—Н3В	109.5	C34—C35—C36	120.2 (4)
НЗА—СЗ—НЗВ	109.5	С34—С35—Н35	119.9
С2—С3—Н3С	109.5	С36—С35—Н35	119.9
НЗА—СЗ—НЗС	109.5	C35—C36—C31	120.7 (4)
НЗВ—СЗ—НЗС	109.5	С35—С36—Н36	119.6
C2—C4—H4A	109.5	С31—С36—Н36	119.6
C2—C4—H4B	109.5	C42—C41—C46	123.7 (3)
H4A—C4—H4B	109.5	C42—C41—N1	118.5 (3)
C2—C4—H4C	109.5	C46—C41—N1	117.8 (3)
H4A—C4—H4C	109.5	C41—C42—C43	119.3 (4)
H4B—C4—H4C	109.5	C41—C42—H42	120.3
C16—C11—C12	118.5 (3)	C43—C42—H42	120.3
C16—C11—P1	123.3 (3)	C44—C43—C42	119.5 (4)
C12—C11—P1	118.1 (3)	C44—C43—H43	120.2
C13—C12—C11	120.7 (4)	C42—C43—H43	120.2
C13—C12—H12	119.7	C43—C44—C45	121.9 (4)
C11—C12—H12	119.7	C43—C44—H44	119.1
C12—C13—C14	120.5 (4)	C45—C44—H44	119.1
С12—С13—Н13	119.7	C50—C45—C44	122.5 (3)
C14—C13—H13	119.7	C50—C45—C46	118.3 (3)
C15-C14-C13	119.3 (3)	C44—C45—C46	119.2 (3)
C15-C14-H14	120.3	C41—C46—C47	124.5 (3)
C13—C14—H14	120.3	C41—C46—C45	116.3 (3)
C14—C15—C16	120.5 (4)	C47—C46—C45	119.2 (3)
C14—C15—H15	119.7	C48—C47—C46	120.3 (4)
С16—С15—Н15	119.7	C48—C47—H47	119.8
C11—C16—C15	120.4 (4)	С46—С47—Н47	119.8
C11-C16-H16	119.8	C47—C48—C49	120.7 (4)
C15—C16—H16	119.8	C47—C48—H48	119.6
C26—C21—C22	118.7 (3)	C49—C48—H48	119.6
C26—C21—P1	122.8 (3)	C50—C49—C48	120.3 (4)
C22—C21—P1	118.4 (3)	С50—С49—Н49	119.8
C23—C22—C21	120.2 (3)	C48—C49—H49	119.8

C23—C22—H22	119.9	C49—C50—C45	121.2 (4)
C21—C22—H22	119.9	С49—С50—Н50	119.4
C24—C23—C22	120.4 (4)	С45—С50—Н50	119.4
С24—С23—Н23	119.8	N7—N1—O2	123.9 (3)
С22—С23—Н23	119.8	N7—N1—C41	119.5 (3)
C23—C24—C25	120.2 (4)	O2—N1—C41	116.7 (3)
C23—C24—H24	119.9	N1—N7—O3	114.3 (3)
C25—C24—H24	119.9	N1—O2—Rh1	110.0 (2)
C24—C25—C26	120.3 (4)	N7—O3—Rh1	113.7 (2)
С24—С25—Н25	119.8	C11—P1—C21	102.64 (17)
С26—С25—Н25	119.8	C11—P1—C31	103.59 (16)
C21—C26—C25	120.2 (4)	C21—P1—C31	106.98 (17)
С21—С26—Н26	119.9	C11—P1—Rh1	121.83 (13)
С25—С26—Н26	119.9	C21—P1—Rh1	113.03 (12)
C32—C31—C36	118.7 (4)	C31—P1—Rh1	107.63 (12)
C32—C31—P1	124.3 (3)	C1—Rh1—O2	176.15 (13)
C36—C31—P1	117.0 (3)	C1—Rh1—O3	101.74 (14)
C33—C32—C31	120.4 (4)	O2—Rh1—O3	77.74 (10)
С33—С32—Н32	119.8	C1—Rh1—P1	90.54 (12)
С31—С32—Н32	119.8	O2—Rh1—P1	89.92 (8)
C32—C33—C34	120.3 (4)	O3—Rh1—P1	167.66 (8)

Fig. 1